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Abstract 
This research aimed at developing a theoretical framework to predict the next obfuscation (or 

deobfuscation) move of the adversary, with the intent of making cyber defense proactive. More 

specifically, the goal was to understand the relationship between obfuscation and deobfuscation 

techniques employed in malware offense and defense. The strategy was to build upon previous work of 

Giacobazzi and Dalla Preda on modeling obfuscation and deobfuscation as abstract interpretations. It 

furthers that effort by developing an analytical model of the best obfuscation with respect to a 

deobfuscator. In addition, this research aimed at developing cost models for obfuscation and 

deobfuscations. 

The key findings of this research include: a theoretical model of computing the best obfuscation for a 

deobfuscator, a method for context-sensitive analysis of obfuscated code, a method for learning 

obfuscation transformations used by a metamorphic engine, several insights into the use of machine 

learning in deobfuscation, and game-theoretic models of certain scenarios of offense-defense games in 

software protection. 
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1 Research Team 
The research effort was led by Arun Lakhotia and Andrew Walenstein of University of Louisiana at 

Lafayette, Vir Phoha of Louisiana Tech, and Bin Mai of Northwestern University. Other researchers who 

participated in the effort are: Wu Feng, Richard Greechie, and  Enamul Karim of LaTech; Suresh 

Golconda and Anshuman Singh of UL Lafayette.  The research also benefited from collaboration with 

Roberto Giacobazzi of University of Verona, Italy and Mila Dalla Preda of University of Bologna, Italy.  

Several graduate and undergraduate students participated in the research. Bin Mai moved to Bowie 

State, MD, in the first year of the project, and subsequently discontinued participation. 

2 Research Outcomes 

The research results can be summarized along three broad categories based on the underlying theories: 

• Abstract Interpretation 

• Machine Learning 

• Game Theory 

In the literature, code obfuscation and deobfuscation are treated as operations on individual programs. 

Our works using abstract interpretation are based on such models of obfuscation and deobfuscation. In 

addition, we also use machine learning (ML) to model obfuscation and deobfuscation as operations on 

collections. The ML-based approaches better represent the real-world, where intractable problems are 

addressed using probabilistic models. Finally, we use game-theory to model the strategic trade-offs in an 

offense-defense game played out in a few specific scenarios. 

Our investigation in obfuscation and deobfuscation has led to identification of a new method of attack 

on software that does not appear to have been studied thus far. In this attack, a program is made to 

attack against itself by taking control of its execution and changing its control flow.   

The rest of this report summarizes our research results. 

2.a Abstract Interpretation 

2.a.i Theoretical Model of Potency of Obfuscation (Dalla Preda et al., 2012) 

Wu Feng, a Post Doctoral Researcher supported by this grant, worked with PI Lakhotia and collaborators 

and discovered several interesting properties of possibly obfuscated programs under abstraction.   As a 

program transformation, an obfuscation preserves some properties of a program. The largest set of 

properties preserved by an obfuscation defines its potency. Using Giacobazzi and Dalla Preda's abstract 

interpretation based model of obfuscation we show that the largest correct approximation of an 

obfuscation can be obtained using its 'residuated' approximation, which in turn can be computed by 

iterating over its 'shadow'. 
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This result is significant in that it provides a method to calculate the least obfuscation function that can 

defeat a deobfuscation function.  Whereas previous work of Giacobazzi and Dalla Preda had created 

separate partial order lattices of obfuscators and deobfuscators, our result establishes links between the 

two lattices. The relationship established does not yet define a partial order, as it does not establish the 

best deobfuscation function for a given obfuscation function. 

2.a.ii Context Sensitive Analysis of Binaries (Boccardo et al. 2009; Lakhotia et al., 2010a 

and 2010b) 

When it comes to analyzing programs in the context of this project, the analysis is performed on binary 

executables. Thus far, analyses of binaries have been modeled on analyses of source code. In the 

prevalent approach, a binary is disassembled, split into procedures, a control flow graph is constructed 

for each procedure, and then classic interprocedural analysis is applied. While this approach has enabled 

the use of prior experience in analyzing binaries, it has significant limitations. A majority of the 

limitations stem from the fact that binary (or assembly) programs do not have primitives for code or 

data encapsulation. As a result, the methods for finding procedure and code block boundaries are at 

best heuristic. 

We have developed a method for context sensitive analysis of binaries without requiring procedural 

decomposition of the binary. The method is resilient to class call and return obfuscation attacks. Our 

method is based on the insight that classic interprocedural analysis depends on call and return 

instructions to achieve two tasks – creation of a new context and transfer of control.  Programs can be 

obfuscated by using a separate set of instructions to achieve each. Our method, based on abstract 

interpretation, decouples the two tasks. As a result, the method does not depend on encapsulation of 

code into procedures to perform context sensitive analysis. 

2.a.iii Learning Metamorphism (Unpublished) 

Metamorphism is used to transform code so as to reduce or remove static footprints that can be used to 

relate two versions of the program. Metamorphism is used by malware to evade detection from static 

signature based detectors. Its use has increased as the malware distribution mechanism has moved to 

the web through infected sites. In this use a site is hacked so as to distribute malware to users 

connecting to the site. Instead of distributing the same copy of malware to each user, the server 

transforms the binary and distributes metamorphic variants. 

In prior work, we showed that if the transformation rules of a metamorphic engine are known, then the 

variants it produces can be transformed back to a normal form with a reasonable confidence.  We have 

now developed a method to extract transformation rules by syntactic and semantic comparison of 

malware variants generated by an engine. Our method combines abstract interpretation and data 

mining. It uses abstract (symbolic) interpretation to compute the semantics of individual blocks of 

programs. Code blocks from two variants with matching semantics are then paired. The actual code of 

the paired blocks is compared and a ‘diff’ is computed. The differences in the paired segments of the 

two variants provides a set of candidate transformed segments, which are then filtered again to keep 

only those pairs with equivalent semantics.  The matching pair of transformed code is then generalized 

to create a set of general rules. 
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We have used our method to successfully extract the transformation rules used by the Win32.Evol 

metamorphic virus.  A manuscript describing the results is in preparation. 

2.b Machine Learning 

2.b.i Detection of Anomalous Behavior in Computer Programs (Kanaskar et al., 2012) 

Co-PI Phoha and his collaborators introduced techniques and formalisms of dynamical system theory 

into analysis of program behavior via system calls to detect code injections into an application’s 

execution space. They consider a program as a blackbox dynamical system whose internals are not 

known, but whose output can be observed. The blackbox system observable in the proposed model is 

the system calls a program makes. The collected system calls are treated as signals which are used to 

reconstruct the system’s phase space. Then, by using techniques from dynamical system theory, they 

quantify the amount of complexity of the system’s (program’s) behavior. The change in the behavior of 

a compromised system is detected as anomalous behavior compared to the baseline established from a 

clean program.  

2.b.ii Mimicking Biometric Behavior by Computer Programs (Rehman et al., 2011; 

Serwadda et al., 2011) 

We have investigated the strength of password and keystroke dynamics (KD) based co-authentication 

systems against synthetic attacks by bots and malware, and we showed that regardless of password 

length there is a category of users whose KD templates are critically vulnerable to such attacks. Co-PI 

Phoha and his students, Knandakar Rahman and Abdul Serwadda, have shown how malicious computer 

programs can mimic human behavior and defeat behavioral signature based authentication and 

verification systems using (i) individual user’s snooped behavior, and (ii) global knowledge of users' 

behavior. These studies are conducted in the context of keystroke dynamics based biometrics systems. 

2.b.iii Information Fusion to See Through Obfuscation (LeDoux et al., 2012) 

In this research we studied how to take advantage of the limitations of obfuscations. It has previously 

been established that there can be no perfect obfuscation. In other words, one cannot obfuscate a 

program such that it can hide all of its interesting properties from all possible analyzers (deobfuscators). 

Hence, obfuscations are targeted against specific methods of deobfuscations.  We studied how to use 

multiple, independent sensors to detect a program that is attempting to evade detection by dynamic 

analyzers. Our study indicates that fusing the sensor data using disjoint union amplifies the signal that 

indicates obfuscation.  

The key significance of our result is that information fusion, if done correctly, can turn an obfuscation 

attempt against the adversary.  The attempted obfuscation itself becomes a signal that in fact aids in 

detection of evasive malware. 

2.b.iv Concept Drift in Malware Families (Singh et al., 2012a) 

Machine learning methods are predicated on having training data representative of the population 

under study. One weakness this leads to is that when the population changes, the training data utilized 

must also change, and any concepts learned through machine learning must be relearned.  This problem 

is compounded when a human and machine learner have an adversarial relationship as exists between 
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malware authors and machine learning methods used to detect malware.  Thus, a fundamental problem 

in using machine learning for malware detection is deciding if and when to update training data and 

retrain machine learners. 

This work focused on developing a sensor for measuring concept drift in malware families. The term 

concept drift is used to describe the situation where the statistical properties of the population under 

study changes. Previous works on measuring drift, done in the context of recommendation systems, did 

so by tracking individual features. These previous measures cannot be applied in domains where the 

feature sets are very large, as is the case for documents and programs. We have defined a measure for 

concept drift using the changes in similarity of malware variants with respect to a reference variant.  The 

insight is that, over time, malware within a family will become different from this reference variant. The 

change in similarity can then be used to determine drift. The method was calibrated using successive 

variants of benign programs from open source repository, and then evaluated using malware data from 

the wild.  

2.b.v Detecting Programs Generated by the Same Automated Engine (Chouchane et al, 

2012) 

Software engineering and software protection have conflicting goals. Whereas software engineering 

requires a program to be easily understood and modified, software protection requires the opposite. 

This implies that large complex systems cannot be developed from the ground up in manner that the 

intellectual property they contain is also protected. If the programs were difficult to comprehend, the 

programmers would not be able to debug, test, or verify them. Hence, software protection is by 

necessity performed by automated tools after a system has been developed.  

An important step in breaking the protection is to determine the method of protection used, which in 

turn can be modeled as the problem of determining the automated engine used to generate a program. 

Our research introduced two forms of the “engine attribution” problem. The simple case of the problem 

is when the engine(s) whose creations are to be recognized are known. A more complex problem is 

when only programs created by one or more engines are known, but the engine itself is not accessible. 

The paper presents machine learning methods for computing approximate solutions for both the 

problems and presents results from experimental study.   

2.c Game Theory 

2.c.i Information Exchange for Packers (Singh et al., 2011) 

Co-PI Lakhotia and graduate student Singh participated in the IEEE Malware Working Group, a 

consortium of various anti-malware companies, chartered with the task of creating a cooperative 

infrastructure to aid in detecting packed malware. The effort of this working group has led to the 

creation of the IEEE Taggant Malware System, a cooperative exchange between anti-malware vendors 

and packer (software protection) developers. Packers use obfuscation techniques to deter inspection of 

the system they are protecting. While this is desirable for protecting intellectual property, the 

mechanism also aids malware in evasion. This group faced the challenge of developing a system that 
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would help preventing malware from using packing for evasion, without violating protection of 

intellectual property. 

Co-PI Lakhotia participated in the creation of the concept of software taggant. Drawing analogy from 

taggants used for tracking explosives, a software taggant aids in tracking a packed program to its 

creator, without revealing its internal code. The IEEE Taggant Malware System uses an infrastructure 

similar to code signing, but with a slight twist. A taggant is a signature introduced by a packer, and it 

contains information sufficient to identify the developer of the software packed.  

Besides participating in the development of the IEEE Taggant Malware System, the two researchers also 

developed a game-theoretic model for assessing the incentive needed for software protection vendors 

to participate in this exchange in the presence of the ‘moral hazard’ that by such participation they 

stand to lose business from malware authors. The phrase ‘moral hazard’ captures the situation in the 

principal-agent problem where the agent, in our case the software protection vendor, is expected to 

work on the behalf of the principal, in our case the anti-malware vendors, and where the interests of the 

agent and the principal are not aligned. Our research highlighted the existence of the moral hazard and 

developed an economic model to compute the incentive the principal (anti-malware vendors) may 

provide to the agent (software protection vendors) such that it is not in the interest of the agent to 

pursue a business (selling non-taggant compliant product to malware authors) that is detrimental to the 

interest of the principal. 

2.c.ii Game Theoretic Strategy Against Social Network Bots Inferring Users’ Identities and 

Preferences (Chen et al., 2012)  

Co-PI Dr. Phoha and his student Jundong Chen analyzed several game theoretical models, including their 

evolutionary extensions, to find the optimal strategy for the disclosure of user profile attributes in social 

networks from game-theoretic perspectives. Revealing attributes increases users’ chances of finding 

friends and attracting new ones. However, excessive disclosure of attributes may enable inference of 

their identities and preferences by malicious programs or users. Results of the analysis indicate that 

users of social networks should adopt maximum privacy settings if such risk is involved, despite the 

intensity of their motivation to reveal attributes.  

2.c.iii Deployable Performance for Classifiers in Adversarial Environment (Singh et al., 

2012b). 

Many security systems are supervised classification systems. They are classically evaluated by 

generalizing their performance for unseen data from their performance on known samples from the 

population that the system is to classify. Generalization performance is estimated from test 

performance using confidence intervals (CIs), which depend on the method used for determining test 

performance: holdout, cross-validation, or bootstrap. For instance, the generalization performance of a 

classification model may be measured using the ratio of false positives on a k-fold cross validation test. 

We argue that generalization performance may not be a good determinant of the performance of a 

classifier deployed in an adversarial environment because the population characteristic may change in 

response to deployment of the classifier. We present a model for deployable performance that 

'prescribes' a generalization performance target for a security technology such that the expected cost to 
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the deployer is below a certain threshold. The deployable performance model factors in not just the cost 

of response to a security breach, but also the cost to the adversary for gaming the system by obfuscating 

the 'features' observed by the classification model. 

2.d New Method of Deobfuscation 

2.d.i Using a Program Against Itself (Miles et al., 2012) 

There are two classic models of deobfuscation (or attack on software) – static analysis and dynamic 

analysis. In static analysis, the software is analyzed without executing it. In dynamic analysis, the 

software is executed, and analyzed by monitoring its internal state and its interaction with the external 

environment. 

There is a specific situation that arises when analyzing botnet malware that challenges these two 

methods. A bot typically communicates with its master over a cryptographically secure channel. In 

addition, the bot may also contain code that is encrypted.  Thus, an important step in analyzing or taking 

control of a bot is bypassing its encryption. This can be challenging for both static and dynamic analysis. 

The bots are often designed to connect to the master before activating their encryption or decryption 

logic. However, connecting to the master can reveal the presence of the analyst, and may give the bot 

master an ability to activate a self-destruct command. 

One common method for breaking the encryption/decryption is to identify the encryption/decryption 

procedures, reconstruct them in a different program, apply them to decrypt the original binary, and 

then apply static and dynamic analysis on the decrypted program. This method of attack can be quite 

time consuming and is prone to error. 

In the course of this research, we have discovered a method by which the code within a binary can be 

directly executed ‘in situ.’ This allows for using the decryption functions within a binary directly, but 

outside of the malware author's control. Thus, dynamic and static analysis on the binary of the relevant 

procedures can be performed without requiring that the cryptographic code be reconstructed in a 

separate program.  

3 Publications 
(Boccardo et al., 2009)  Davidson R. Boccardo, Arun Lakhotia, A. Manacero Jr, and Michael Venable. 
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(Chen et al., 2012) Jundong Chen, Matthias R. Brust, Vir V. Phoha and Ankunda R. Kiremire. A 
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